(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
append(Cons(x, xs), ys) → Cons(x, append(xs, ys))
append(Nil, ys) → ys
goal(x, y) → append(x, y)
Rewrite Strategy: INNERMOST
(1) DecreasingLoopProof (EQUIVALENT transformation)
The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
append(Cons(x, xs), ys) →+ Cons(x, append(xs, ys))
gives rise to a decreasing loop by considering the right hand sides subterm at position [1].
The pumping substitution is [xs / Cons(x, xs)].
The result substitution is [ ].
(2) BOUNDS(n^1, INF)
(3) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(4) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
append(Cons(x, xs), ys) → Cons(x, append(xs, ys))
append(Nil, ys) → ys
goal(x, y) → append(x, y)
S is empty.
Rewrite Strategy: INNERMOST
(5) SlicingProof (LOWER BOUND(ID) transformation)
Sliced the following arguments:
Cons/0
(6) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
append(Cons(xs), ys) → Cons(append(xs, ys))
append(Nil, ys) → ys
goal(x, y) → append(x, y)
S is empty.
Rewrite Strategy: INNERMOST
(7) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(8) Obligation:
Innermost TRS:
Rules:
append(Cons(xs), ys) → Cons(append(xs, ys))
append(Nil, ys) → ys
goal(x, y) → append(x, y)
Types:
append :: Cons:Nil → Cons:Nil → Cons:Nil
Cons :: Cons:Nil → Cons:Nil
Nil :: Cons:Nil
goal :: Cons:Nil → Cons:Nil → Cons:Nil
hole_Cons:Nil1_0 :: Cons:Nil
gen_Cons:Nil2_0 :: Nat → Cons:Nil
(9) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
append
(10) Obligation:
Innermost TRS:
Rules:
append(
Cons(
xs),
ys) →
Cons(
append(
xs,
ys))
append(
Nil,
ys) →
ysgoal(
x,
y) →
append(
x,
y)
Types:
append :: Cons:Nil → Cons:Nil → Cons:Nil
Cons :: Cons:Nil → Cons:Nil
Nil :: Cons:Nil
goal :: Cons:Nil → Cons:Nil → Cons:Nil
hole_Cons:Nil1_0 :: Cons:Nil
gen_Cons:Nil2_0 :: Nat → Cons:Nil
Generator Equations:
gen_Cons:Nil2_0(0) ⇔ Nil
gen_Cons:Nil2_0(+(x, 1)) ⇔ Cons(gen_Cons:Nil2_0(x))
The following defined symbols remain to be analysed:
append
(11) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
append(
gen_Cons:Nil2_0(
n4_0),
gen_Cons:Nil2_0(
b)) →
gen_Cons:Nil2_0(
+(
n4_0,
b)), rt ∈ Ω(1 + n4
0)
Induction Base:
append(gen_Cons:Nil2_0(0), gen_Cons:Nil2_0(b)) →RΩ(1)
gen_Cons:Nil2_0(b)
Induction Step:
append(gen_Cons:Nil2_0(+(n4_0, 1)), gen_Cons:Nil2_0(b)) →RΩ(1)
Cons(append(gen_Cons:Nil2_0(n4_0), gen_Cons:Nil2_0(b))) →IH
Cons(gen_Cons:Nil2_0(+(b, c5_0)))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(12) Complex Obligation (BEST)
(13) Obligation:
Innermost TRS:
Rules:
append(
Cons(
xs),
ys) →
Cons(
append(
xs,
ys))
append(
Nil,
ys) →
ysgoal(
x,
y) →
append(
x,
y)
Types:
append :: Cons:Nil → Cons:Nil → Cons:Nil
Cons :: Cons:Nil → Cons:Nil
Nil :: Cons:Nil
goal :: Cons:Nil → Cons:Nil → Cons:Nil
hole_Cons:Nil1_0 :: Cons:Nil
gen_Cons:Nil2_0 :: Nat → Cons:Nil
Lemmas:
append(gen_Cons:Nil2_0(n4_0), gen_Cons:Nil2_0(b)) → gen_Cons:Nil2_0(+(n4_0, b)), rt ∈ Ω(1 + n40)
Generator Equations:
gen_Cons:Nil2_0(0) ⇔ Nil
gen_Cons:Nil2_0(+(x, 1)) ⇔ Cons(gen_Cons:Nil2_0(x))
No more defined symbols left to analyse.
(14) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
append(gen_Cons:Nil2_0(n4_0), gen_Cons:Nil2_0(b)) → gen_Cons:Nil2_0(+(n4_0, b)), rt ∈ Ω(1 + n40)
(15) BOUNDS(n^1, INF)
(16) Obligation:
Innermost TRS:
Rules:
append(
Cons(
xs),
ys) →
Cons(
append(
xs,
ys))
append(
Nil,
ys) →
ysgoal(
x,
y) →
append(
x,
y)
Types:
append :: Cons:Nil → Cons:Nil → Cons:Nil
Cons :: Cons:Nil → Cons:Nil
Nil :: Cons:Nil
goal :: Cons:Nil → Cons:Nil → Cons:Nil
hole_Cons:Nil1_0 :: Cons:Nil
gen_Cons:Nil2_0 :: Nat → Cons:Nil
Lemmas:
append(gen_Cons:Nil2_0(n4_0), gen_Cons:Nil2_0(b)) → gen_Cons:Nil2_0(+(n4_0, b)), rt ∈ Ω(1 + n40)
Generator Equations:
gen_Cons:Nil2_0(0) ⇔ Nil
gen_Cons:Nil2_0(+(x, 1)) ⇔ Cons(gen_Cons:Nil2_0(x))
No more defined symbols left to analyse.
(17) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
append(gen_Cons:Nil2_0(n4_0), gen_Cons:Nil2_0(b)) → gen_Cons:Nil2_0(+(n4_0, b)), rt ∈ Ω(1 + n40)
(18) BOUNDS(n^1, INF)